Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

> **BEC001 – Advanced Computer Architecture** Fifth Semester, 2016-17 (odd Semester)

Course (catalog) description

To make students know about the Parallelism concepts in Programming. To give the students an elaborate idea about the different memory systems and buses. To introduce the advanced processor architectures to the students. To make the students know about the importance of multiprocessor and multi-computers. To study about data flow computer architectures

Compulsory/Elective course: Elective for ECE Students

:

- Credit hours : 3 credits
- Course Coordinator : G.Kanagavalli, Asst. Professor, Department of ECE

Instructors

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Ms. G.Kanagavalli	III year ECE	SA020		Kanagavalli.ece@ bharathuniv.ac.in	12.30-1.30 pm

Relationship to other courses:

Pre –requisites	: BCS101- Fundamentals of computing and programming	
Assumed knowledge	: The students will have a basic knowledge in operation of digital computer, concept	of
	pipelining and memory system including cache memories and virtual memory	
Following courses	: BET008 - Wireless Networks	

Syllabus Contents

UNIT- I PARALLEL COMPUTER MODELS

Evolution of Computer architecture, system attributes to performance, Multi processors and multi computers, Multivector and SIMD computers, PRAM and VLSI models-Parallelism in Programming, conditions for Parallelism-Program Partitioning and Scheduling-program flow Mechanisms-Speed up performance laws-Amdahl's law, Gustafson's law-Memory bounded speedup Model.

9

UNIT- II

and transaction.

ADVANCED PROCESSORS

MEMORY SYSTEMS AND BUSES

UNIT- IV

UNIT -III

MULTI PROCESSOR AND MULTI COMPUTERS

Multiprocessor system interconnects- Cross bar switch, Multiport memory-Hot spot problem, Message passing mechanisms-Pipelined processors-Linear pipeline, on linear pipeline-Instruction pipeline design -Arithmetic pipeline design.

and SIMD computers-Vector processing principles-Cray Y-MP 816 system -Inter processor communication

Memory hierarchy-cache and shared memory concepts-Cache memory organization-cache addressing models, Aliasing problem in cache, cache memory mapping techniques-Shared memory organization -Interleaved memory organization, Lower order interleaving, Higher order interleaving. Back plane bus systems-Bus addressing, arbitration

Instruction set architectures-CISC and RISC scalar processors-Super scalar processors-VLIW architecture- Multivector

UNIT- V

DATA FLOW COMPUTERS AND VLSI COMPUTATIONS

Data flow computer architectures-Static, Dynamic-VLSI Computing Structures-Systolic array architecture, mapping algorithms into systolic arrays, Reconfigurable processor array-VLSI matrix arithmetic processors -VLSI arithmetic models, partitioned matrix algorithms, matrix arithmetic pipelines.

TEXT BOOKS:

- 1. Kai Hwang, Advanced Computer architecture Parallelism ,scalablity ,Programmablity ,Mc Graw Hill,N.Y, 2003
- 2. Kai Hwang and F.A.Briggs, Computer architecture and parallel processor 'Mc Graw Hill, N.Y, 1999

REFERENCES:

- 1. David A. Patterson and John L. Hennessey, —Computer organization and design Elsevier,
- 2. Fifth edition, 2014.
- 3. www.sci.tamucc.edu/~sking/Courses/COSC5351/syllabus.php

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded | Computer

9

9

9

TOTAL NO OF PERIODS: 45

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To make students know about the Parallelism concepts in Programming .To give the		Correla	tes to		
students an elaborate idea about the different memory systems and buses. To introduce			program		
the advanced processor architectures to the students. To make the students know about			outcome		
the importance of multiprocessor and multi-computers. To study about data flow	Н	М	L		
computer architectures .					
Demonstrate concepts of parallelism in hardware/software.	b	d, e	а		
Discuss memory organization and mapping techniques.	d	е	С		
Describe architectural features of advanced processors.	b	С	а		
Interpret performance of different pipelined processors.	е	С	а		
Explain data flow in arithmetic algorithms	е	С	а		
Development of software to solve computationally intensive problems.	d	b	а		

H: high correlation, M: medium correlation, L: low correlation

Session	Topics	Problem solving	Text / Chapter
		(Yes/No)	
UNIT I PA	ARALLEL COMPUTER MODELS		
1.	Evolution of Computer architecture	No	
2.	system attributes to performance		
3.	Multi processors and multi computers		
4.	Multi-vector and SIMD computers	No	
5.	PRAM and VLSI models-Parallelism in Programming	No	[T1] Chapter -1
6.	conditions for Parallelism-Program Partitioning and	No	
	Scheduling-program flow Mechanisms		
7.	Speed up performance laws-Amdahl's law	No	
8.	Gustafson's law	No	
9.	Memory bounded speedup Model	No	
UNIT II N	NEMORY SYSTEMS AND BUSES		
10.	Memory hierarchy	No	
11.	Cache and shared memory concepts	No	
12.	Cache memory organization	No	
13.	Cache addressing models	No	
14.	Aliasing problem in cache	No	[T1] Chapter -2
15.	Cache memory mapping techniques .	No	
16.	Shared memory organization-Interleaved memory	No	-
	organization.		
17.	Lower order interleaving, Higher order interleaving	No	-
18.	Back plane bus systems	No	-
19.	Bus addressing, arbitration and transaction	No	-
UNIT II	I ADVANCED PROCESSORS		
20.	Instruction set architectures	No	
21.	CISC and RISC scalar processors	No	1
22.	Super scalar processors	No	1
23.	VLIW architecture	No	-
24.	Multivector and SIMD computers	No	[T1] Chapter -3
25.	Vector processing principles	No	1
		NL-	

27.	MP 816 system	No	
28.	Inter processor communication	No	
UNIT IV	MULTI PROCESSOR AND MULTI COMPUTERS		
29.	Multiprocessor system interconnects	No	
30.	Cross bar switch	No	
31.	Multiport memory	No	
32.	Hot spot problem	No	
33.	Message passing mechanisms	No	-
34.	Pipelined processors-Linear pipeline	No	
35.	on linear pipeline	No	[T1] Chapter -4
36.	Instruction pipeline design	No	
37.	Arithmetic pipeline design	No	
UNIT V		1	
DATA FLO	W COMPUTERS AND VLSI COMPUTATIONS		
38.	Data flow computer architectures	No	
39.	Static, Dynamic	No	
40.	VLSI Computing Structures	No	-
41.	Systolic array architecture	No	-
42.	mapping algorithms into systolic arrays	No	
43.	Reconfigurable processor array	No	[T1] Chapter -5
43.	VLSI matrix arithmetic processors	No	1
44.	VLSI arithmetic models	No	1
45.	partitioned matrix algorithms, matrix arithmetic pipelines	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	10%
Cycle Test – II	-	10%
Model Test	-	25%
Attendance	-	5%
Final exam	-	50%

Prepared by: G.Kanagavalli, Assistant Professor, Department of ECE

Dated: 10/7/2017

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

Engineering Graduate will have

a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.

b)an ability to identify, formulate, and solve engineering problems

c)an ability to design a system, component, or process to meet desired needs within realistic constraints such as

economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d)an ability to design and conduct experiments, as well as to analyze and interpret data

e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

f)an ability to apply reasoning informed by a knowledge of contemporary issues

g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices

i) an ability to function on multidisciplinary teams

j) an ability to communicate effectively with the engineering community and with society at large

k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through selfdirected professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature
Ms. G.KANAGAVALLI	

Course Coordinator	Academic Coordinator		Professor In-Charge			HOD/ECE	
(Ms.G.Kanagavalli)	()	(Dr.)	()